
SETIT 2007
4rth International Conference: Sciences of Electronic,

Technologies of Information and Telecommunications
March 25-29, 2007 – TUNISIA

 - 1 -

Utilising Grid Services in ebXML Registry
Bahareh Rahmanzadeh Heravi, Mohammadreza Razzazi

Computer Engineering and Information Technology Department, Amirkabir University of Technology, Hafez
Avenue, Tehran, Iran

rahmanzadeh@gmail.com
razzazi@ce.aut.ac.ir

Abstract: The aim of this paper is to demonstrate how to bring together two independent technologies, taking
advantage of the complementarily suitable characteristics of each. The technologies are Grid Services and ebXML
Registry. Specifically, the goal of this paper is to show how an ebXML Registry may be used to publish, store, manage
and discover Grid Services. This will be valuable as a tool to enable trading partners to conduct business over a
distributed environment using a standard framework, where the environment is the Grid and the standard framework is
ebXML.

Key words: ebXML, ebXML Registry, Grid Services, Grid technology, Global E-marketplace.

INTRODUCTION
In recent years there has been an increasing

awareness in the significance of the e-business and the
numerous new opportunities it offers and the
challenges that imposes. As a result, many companies
around the world have decided to take advantage of
this new phenomenon and start their own e-business.
Because the cost of running an e-business is relatively
high, small and medium size companies wouldn’t be
able to participate in such a market. Furthermore there
are no standard protocol between them for their
activities, from finding a trading partner through to
making and closing a contract. In such conditions, the
participants have to do with many inefficiencies and
compromises. One solution is to have a global market,
which all businesses can participate in forming an e-
marketplace. For conducting business in such an e-
marketplace we need a robust and standards-based
environment as a framework. One such framework is
ebXML (Electronic Business using eXtensible
Markup Language).

ebXML is a modular suite of specifications that
enables enterprises of any size to conduct business
over the Internet from any geographical location.
Using ebXML, companies now have a standard
method to exchange business messages, establish
trading relationships, communicate data in common
terms and define and register business processes. [6]

Grid technologies, on the other hand, support the
sharing and coordinated use of diverse resources in

dynamic Virtual Organizations [15]. That is, the
creation of virtual computing systems from
geographically and organisationally distributed
components. As the aim of both entities is to be
independent of geographical locations, it will be
desirable to utilise the grid as the environment for
ebXML to form a global e-marketplace.

Grid technology uses web services on the Grid
environment, called ‘Grid Services’, that is defined by
OGSA (Open Grid Service Architecture) as a Web
Service that provides a set of interfaces and behaviors
that determines how a client interacts with a Grid
service and conforms to a set of conventions [8].

Currently, Grid technology is mostly used in
sciences. Considering the fact that ebXML is one of
the most complete e-business frameworks, the
convergence of ebXML and Grid technology could
provide a wholesome framework for the future of e-
business.

In an ideal global e-marketplace with shared
resources and services, trading partners can
understand each other without any previous
conformity. It means that potential trading partners
can join this e-marketplace and immediately start their
business. Any business, regardless of its size, will
have the opportunity to participate in the global
market and take advantage of the opportunities that
might arise.

In this paper we demonstrate how to publish, store,
manage and discover OGSI (Open Grid Services

SETIT2007

 - 2 -

Infrastructure) Based Grid Services through ebXML
Registry. Using Grid Services, we will be working
with services that are already on the Grid
environment, and using ebXML, we will take
advantage of the e-business framework. Thus we will
be able to offer Grid Services through a unified e-
marketplace. Trading partners will be able to sell Grid
Services as part of their services while they are in a
unified structure at the same time.

1. Background

1.1. ebXML
ebXML was started in 1999 as an initiative of

OASIS and the United Nations/ECE agency CEFACT.
The original project envisioned and delivered five
layers of substantive data specification, including
XML standards for the following: [6]

• Registry/Repository

• Business Process Specification Schema

• Core Components

• Collaboration Protocol Profiles and Agreements
(CPP/A)

• Messaging Service

In this paper we will only focus on ebXML
Registry as the rest will remain unchanged for the
purposes of our discussion.

1.2. ebXML Registry
The ebXML Registry is central to the ebXML

architecture. An ebXML Registry provides a stable
store where information submitted by an organization
is made persistent. Such information is used to
facilitate ebXML-based Business to Business (B2B)
partnerships and transactions. Submitted contents may
be XML schema and documents, process descriptions,
Web Services, ebXML Core Components, context
descriptions, UML models, information about parties
and even software components. It enables secure and
federated information management. Key ebXML
Registry features are shown in figure 1 below: [1]

Figure 1. Key ebXML Registry features [1]

ebXML Registry can be used to register and
discover Web Services. As Grid Services are a kind of
Web Services, ebXML Registry may be used for
registering and discovering Grid Services too. But this
process requires some enhancements to be able to
handle the differences between Grid Services and Web
Services, on one hand and on the other hand take
advantage of Grid technology’s features.

1.3. Grid Computing
Grid computing is a way of organising computing

resources so that they can be flexibly and dynamically
allocated and accessed, often to solve problems
requiring many organisations’ resources. The objective
of Grid computing is to make resources available so
that they can be more efficiently utilised. [12]

The advantage of sharing is clearest when the need
for resources is unpredictable, short-term, changes
quickly, or where it is too large for any single
organisation’s capability to provide for it. For
example, a problem that may take days to solve on a
single installation’s processing resources can be
solved in a few minutes with the right kind of
parallelization and distribution on additional allocated
computational resources. [12]

1.4. Grid Services
Grid Services are an extension to Web Services for

operating in Grid environments. The Open Grid
Services Infrastructure (OGSI) provides an
infrastructure layer for the OGSA to resolve the
differences between Grid Services and Web Services.

1.4.1. Differences between Grid Services and Web
Services

One extension to Web Services which Grid
Services introduce is the Factory model. The Factory
design pattern is commonly used in Object-Oriented
software systems to enable the creation of multiple,
similar artefacts. An OGSI Factory Service is a Grid
Service that is used by a client to create other Grid
Service Instances. When a client needs to create a new
instance of a particular Grid Service, it locates a
corresponding Factory Service, invokes its related
operation, and receives a unique identifier that can be
used to access the newly-created Instance [11]. The
Factory will start a new Grid Service for that client.
The generated Grid Service terminates after either a
set time, or when requested to do so by the client.

Another extension to Web Services that a Grid
Service introduces is Service Data. Service Data
provides the information about a service, which the
interface alone cannot provide. Every Grid Service has
a basic set of Service Data Elements (SDEs), which
contain information about the service, its interface and
its location [7].

The Web Service interface is described by WSDL
(Web Services Description language) whose function
is to describe the service interface and enable clients
to invoke the service. OGSI adds the features of Grid
Services to basic Web Services by redefining the

SETIT2007

 - 3 -

WSDL portType element. Grid Services are described
using an extended form of WSDL known as GWSDL
(Grid WSDL) [12].

WSDL breaks down Web services into a number of
elements, which are as follows: [16]

• Service
A collection of related end points encompassing

the service definitions in the file; the services map the
binding to the port and include any extensibility
definitions.

• Port
A combination of a binding and a network address,

providing the target address of the service
communication

• Binding
The concrete protocol and data formats for the

operations and messages defined for a particular port
type.

• Port type
An abstract set of operations mapped to one or

more end points, defining the collection of operations
for a binding; the collection of operations, because it
is abstract, can be mapped to multiple transports
through various bindings.

• Operation
The abstract definition of the operation for a

message, such as naming a method, message queue, or
business process, that will accept and process the
message.

• Message
An abstract definition of the data, in the form of a

message presented either as an entire document or as
arguments to be mapped to a method invocation.

• Data types
The data types—in the form of XML schemas or

possibly some other mechanism—to be used in the
messages

While a WSDL portType contains only operations,
an OGSI portType can also contain SDEs. To all
intents and purposes a SDE is a property or attribute
of the Web Service (comparable to properties of
classes and objects).

In OGSI, a portType can be constructed by
referencing an existing portType or portTypes, with
the extends attribute, adding new definitions as
required. [12]

GWSDL also extends WSDL by introducing the
concept of PortType inheritance. A PortType can
inherit operations and Service Data Elements from
other

2. Grid Services and ebXML Registry
Grid Services need a Registry to be published,

managed and discovered. There are a few candidates
for such a Registry. ebXML Registry / Repository is
one of the leading Registries in the e-business world,

that was accepted as a standard registry by ISO in
March 2004 as ISO 15003 and ISO 15004. Using
ebXML Registry we will be able to provide Grid
Services in a unified, integrated B2B framework and
use its advanced capabilities.

We need to find a method to take advantage of
ebXML Registry for registering Grid Services. To
achieve this, we map Grid Services Information
Model onto the ebXML Registry Information Model
(ebRIM). There is already a profile of ebXML
Registry [3], which shows how to register Web
Services in an ebXML Registry, and here we will
demonstrate how to register Grid Services on the
ebXML Registry.

3. Mapping Grid Services to ebXML
Registry

3.1. Mapping overview
In order to register Grid Services into ebXML

Registry, we will first map the GWSDL data structure
to related ebXML Registry classes. In the Class
diagrams below the GWSDL Information Model is
shown on the left, and the mapping of this information
model to ebRIM is shown on the right:

Figure 2. Mapping of GWSDL Information Model
entities to ebXML Registry Information Model classes

As shown in figure 2, each Service entity in
GWSDL must be mapped to a Service class in ebXML
Registry. The Port entity must be mapped to a
ServiceBinding class. Binding entity and PortType
entity must be mapped to ExtrinsicObject classes [3]

SETIT2007

 - 4 -

which are the primary metadata class for a
RepositoryItem. ServiceData entity should also be
mapped to ExtrinsicObject classe. The rest of the
GWSDL document does not need to be mapped.

3.1.1. Handling the differences between Grid
Services and Web Services

ebXML Registry Information model is an object
oriented model. Therefore for each service, an
instance will be created. In this way, we can resolve
the first of the three differences between Web Services
and Grid Services which is the Factories concept (see
1.4.1 above). Factory’s responsibility is to create
different instances of Services. Here each Service is an
ebXML Registry Class and consequently it can have
as many instances.

As mentioned in 1.4.1, another difference between
Grid Services and Web Services is Service Data. To
overcome this, we have added a class called
ServiceData to ebRIM. This class is an
ExtrinsicObject that is the same as binding and
portType. Each PortType can have zero or more
ServiceData. In this case we can manage the
ServiceData extension to Web Services. We can also
use them to search in the ebXML Registry which will
be described later.

Finally, as shown in figure 2, a PortType can
inherit another PortType. By adding this relationship
we overcome the third difference which is PortType
inheritance.

3.2. Mapping detail
The rest of this paper is dedicated to the details of

this mapping.

Firstly, we will compare a WSDL code with its
equivalent GWSDL code to demonstrate the
differences between the two that were described
above. The codes only show the PortType and its
lower levels, since the upper levels are the same in
both WSDL and GWSDL.

 <wsdl:portType name="PortTypeName">
 <wsdl:documentation>
 Port Type documentation
 </wsdl:documentation>
 <wsdl:operation name="opName">
 <wsdl:input message="xxxx"/>
 <wsdl:output message="xxxx"/>
 </wsdl:operation>
 </wsdl:portType>

Listing 1. wsdl:portType example code

 <ogsi:portType name=" PortTypeName"
extends="ogsi:GridService">
 <wsdl:documentation>
 Port Type documentation
 </wsdl:documentation>
 <wsdl:operation name=" opName">
 <wsdl:input message="xxxx"/>
 <wsdl:output message="xxxx"/>

 </wsdl:operation>
 <sd:serviceData name="counterValue"
 type="xs:positiveInteger"
 minOccurs="1"
 maxOccurs="1"
 mutability="mutable">
 <sd:documentation>
 The value of the counter.
 </sd:documentation>
 </sd:serviceData>
 </ogsi:portType>

Listing 2. ogsi:portType example code

To achieve our goal we must map GWSDL
entities’ attributes to ebXML Registry Classes’
attributes. This mapping is similar to the ebXML
Registry profile for Web Services [3]. As that
document describes the mapping between WSDL
Information Model and ebXML Registry Information
Model, we won’t talk about the parts which are similar
to WSDL. Instead we will focus on the Grid Services
extensions to Web Services, as described earlier.
However, in order to become familiar with the concept
we will show a summary of the mapping of WSDL
based entities to equivalent ebXML code. This
mapping just shows the three top layers of WSDL and
GWSDL data structure, which are the same. In the rest
of the paper, mappings will only relate to GWSDL
extensions to WSDL.

3.2.1. WSDL data structure mapping to ebRIM
The summary mapping of WSDL Information

Model to ebRIM is shown in the listing 4. This listing
may seem complicated, but this is a good way to show
a summary of the mapping. For more information
please refer to [3]. The mapped values are shown in
italic and WSDL and ebRIM attributes are shown in
bold. The listings 3 and 4 show this mapping up to,
and including, the Binding entity of WSDL. As the
PortType must be redefined for our purpose, we will
follow the description of the rest of the GWSDL
information model after the following coding in 3.2.2.

<!-- -------------- WSDL Service ------------ -->
<wsdl:service name="counterService">
 <wsdl:documentation>
 An implementation of counter Service
 <wsdl:documentation>

<!-- ----------------- WSDL Port -------------- -->
 < wsdl:port binding="bindings:counterBinding"
name="counterPort">
 <soap:address
location="http://your.server.com/counterService"/>
 </port>
<!-- --------------- WSDL Port end----------- -->

</service>
<!-- ------------ WSDL Service end----------- -->

<!-- --------------- WSDL Binding ------------ -->
<binding name="counterBinding"
type="interfaces:counterPortType">
 ….

SETIT2007

 - 5 -

</wsdl:binding>
<!-- ----------- WSDL Binding end------------ -->

Listing 3. The outline of three top level WSDL entities

<!-- -------------- ebRIM Service ------------ -->
<rim:Service
id=”urn:acmeinc:ebxml:registry:3.0:services:wsdl:service:
counterService”>
 <rim:Name>
 <rim:LocalizedString value=”counterService”/>
 </rim:Name>
 <rim:Description>
 <rim:LocalizedString value=” An implementation of
counter Service”/>
 </rim:Description>

<!-- ebRIM Port:ServiceBinding(WSDL Port mapping) -->

 <rim:ServiceBinding
id=”urn:acmeinc:ebxml:registry:3.0:services:wsdl:port:co
unterrPort”
accessURI="http://your.server.com/counterService">
 <rim:Name>
 <rim:LocalizedString value=”counterPort”/>
 </rim:Name>

<!-- ---- ebRIM Port:ServiceBinding end ----- ->

</rim:Service>
<!-- ------------ ebRIM Service end------------ -->

<!-- ebRIM Binding: ExtrinsicObject (WSDL Binding
mapping) -->

<rim:ExtrinsicObject
objectType=”urn:oasis:names:tc:ebxmlregrep:
ObjectType:RegistryObject:ExtrinsicObject:WSDL:Bindin
g”
id=”urn:acmeinc:ebxml:registry:3.0:ExtrinsicObject:wsdl:
binding:counterBinding”>
 <rim:Name>
 <rim:LocalizedString value=”counterBinding”/>
 </rim:Name>
</rim: ExtrinsicObject>
<!-- ----- ebRIM Binding: ExtrinsicObject end ------- -->

Listing 4. Mapping of Listing 3 code to ebRIM

3.2.2. GWSDL data structure mapping to ebRIM
As discussed earlier, OGSI adds the features of

Grid Services to basic Web Services by redefining the
WSDL PortType element. In this part we show how to
apply GWSDL extensions to ebXML Registry.

The first step is to redefine the PortType. As shown
in the listing 2, which is a Grid Service’s GWSDL
code, we can see that a ‘wsdl’ namespace is replaced
by ‘ogsi’ in the beginning of the portType tag. This
shows that the PortType is a Grid Service PortType
and not a Web Service one. Now we must establish a
method to map this ogsi:portType and its attributes to
ebXML Registry classes.

3.2.2.1. ogsi:portType to rim:ExtrinsicObject
Mapping

In the GWSDL portType mapping to ebRIM a
PortType instance must be mapped to a
rim:ExtrinsicObject instance. In this process GWSDL
PortType’s attributes must be mapped to
rim:ExtrinsicObject attributes as described below.

• Attribute objectType
 The objectType attribute value of the

rim:ExtrinsicObject must be set to
urn:oasis:names:tc:ebxmlregrep:
ObjectType:RegistryObject:ExtrinsicObject:OGSI:Por
tType.

<rim:ExtrinsicObject
 objectType=”urn:oasis:names:tc:ebxmlregrep:
ObjectType:RegistryObject:ExtrinsicObject:OGSI:PortT
ype” ...>

Listing 5. Example of rim:ExtrinsicObject objectType
Attribute Mapping for ogsi:portType

• Attribute id

The id attribute value of the rim:ExtrinsicObject
must have as prefix the targetNamespace of the
ogsi:portType element, followed by a suffix of
“:portType:<portType name>” where <portType
name> must be the value of the name attribute of the
<ogsi:portType> element.

TargetNameSpace=
urn:oasis:names:tc:ebxmlregrep:ogsi:registry:interfaces
:3.0
<ogsi:portType name="counterPortType"/>

<rim:ExtrinsicObject
id=”urn:oasis:names:tc:ebxmlregrep:
ogsi:registry:interfaces:3.0:portType:counterPortType”
...>

Listing 6. Example of rim:ExtrinsicObject id Attribute
Mapping for ogsi:portType

• Element Name

The name element of the rim:ExtrinsicObject must
be set according to the value of the name attribute
within the ogsi:portType element.

<ogsi:portType name="counterPortType">

<rim:ExtrinsicObject
id=”urn:oasis:names:tc:ebxmlregrep:ogsi:registry:interf
aces:3.0:portType:counterPortType”>
 <rim:Name>
 <rim:LocalizedString value=”counterPortType”/>
 </rim:Name>
</rim:ExtrinsicObject>

Listing 7. Example of rim:ExtrinsicObject name
Attribute Mapping for wsdl:portType

• Element Description
The description element of the rim:ExtrinsicObject

must be set according to the content of the

SETIT2007

 - 6 -

wsdl:documentation element within the ogsi:port
element, if specified.

<ogsi:portType name="counterPortType">
 <wsdl:documentation>
 portType for Counter Grid Service
 <wsdl:documentation>
</ ogsi:portType>

<rim:ExtrinsicObject
id=”urn:oasis:names:tc:ebxmlregrep:ogsi:registry:interfa
ces:3.0:portType:counterPortType”>
 <rim:Description>
 <rim:LocalizedString value=” portType for Counter
Grid Service”/>
 </rim:Description>
</rim:ExtrinsicObject>

Listing 8. Example of rim:ExtrinsicObject description
Attribute Mapping for wsdl:portType

3.2.2.2. ogsi:serviceData to rim:ExtrinsicObject
Mapping

So far we have added a ServiceData Class to our
ebXML Registry Information Model for modeling the
equivalent entity in GWSDL Information Model. In
the GWSDL ServiceData mapping to ebRIM, a
ServiceData instance must be mapped to a
rim:ExtrinsicObject instance. The details of this
mapping are as follows.

• Attribute objectType
 The objectType attribute value of the ServiceData

class must be set to
urn:oasis:names:tc:ebxmlregrep:ObjectType:Registry
Object:ExtrinsicObject:OGSI:ServiceData.

<rim:ExtrinsicObject
 objectType=”urn:oasis:names:tc:ebxmlregrep:
ObjectType:RegistryObject:ExtrinsicObject:OGSI:Servi
ceData” ...>

Listing 9. Example of rim:ExtrinsicObject objectType
Attribute Mapping for ogsi:serviceData

• Attribute id
The id attribute value of the ServiceData class

must have as prefix the targetNamespace of the
sd:serviceData element, followed by a suffix of
“serviceData:<serviceData name>” where
<serviceData name> must be the value of the name
attribute of the <sd:serviceData> element.

TargetNameSpace=
urn:oasis:names:tc:ebxmlregrep:ogsi:registry:interfaces
:3.0
<sd:serviceData name="counterValue"/>

<rim:ExtrinsicObject
id=”urn:oasis:names:tc:ebxmlregrep:ogsi:registry:interf
aces:3.0: serviceData:counterValue” ...>

Listing 10. Example of rim:ExtrinsicObject id
Attribute Mapping for ogsi:serviceData

• Element Name
The name element of the ServiceData class must

be set according to the value of the name attribute
within the ogsi:portType element.

< sd:serviceData name="counterValue">

<rim:ExtrinsicObject
id=”urn:oasis:names:tc:ebxmlregrep:ogsi:registry:interf
aces:3.0:serviceData:counterValue”>
 <rim:Name>
 <rim:LocalizedString value=” counterValue”/>
 </rim:Name>
</rim:ExtrinsicObject>

Listing 11. Example of rim:ExtrinsicObject
nameAttribute Mapping for ogsi:serviceData

• Element Description
The description element of ServiceData class must

be set according to the content of the
sd:documentation element within the sd:serviceData
element, if specified.

<sd:serviceData name="counterValue">
 <sd:documentation>
 documentation for Service Data
 <sd:documentation>
</wsdl:portType>

<rim:ExtrinsicObject
id=”urn:oasis:names:tc:ebxmlregrep:ogsi:registry:interf
aces:3.0: serviceData:counterValue”>
 <rim:Description>
 <rim:LocalizedString value=” documentation for
Service Data”/>
 </rim:Description>
</rim:ExtrinsicObject>

Listing 12. Example of rim:ExtrinsicObject
description Attribute Mapping for wsdl:portType

4. Discovery of registered Grid Services
The Query Management protocols of ebXML

Registry provide the functionality required by
RegistryClients to query the registry and discover
RegistryObjects and RepositoryItems. [4]

The Ad hoc Query protocol of the QueryManager
service interface allows a client to query the registry
and retrieve RegistryObjects and / or RepositoryItems
that match the specified query. [4]

The AdhocQuery protocol allows clients to submit
queries that may be as general or as complex. As the
queries get more specific they also get more complex.
In these situations it is desirable to hide the
complexity of the query from the client using
parameterized queries stored in the registry. When
using parameterized stored queries the client is only
required to specify the identity of the query and the
parameters for the query rather than the query
expression itself. [3]

SETIT2007

 - 7 -

When submitting a stored query, the submitter may
declare zero or more parameters for that query. A
parameter must be declared using a parameter name
that begins with the ‘$’ character followed
immediately by a letter and then followed by any
combination of letters and numbers. [4]

A stored query may be defined with zero or more
parameters. A client may specify zero or more of the
parameters defined for the stored query when
submitting the AdhocQueryRequest for the stored
query. [4]

A client specifies a query invocation parameter by
using a Slot whose name matches the parameter name
and whose value must be a single value that matches
the specified value for the parameter. [4]

The listing 13 shows an example of how to invoke
a stored query, where its name contains the string
“ebXML”.

<AdhocQueryRequest>
 <rim:AdhocQuery id="${STORED_QUERY_ID}">
 <rim:Slot name="$name">
 <rim:ValueList>
 <rim:Value>%ebXML%</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 </rim:AdhocQuery>
</AdhocQueryRequest>

Listing 13. Example of an AdhocQueryRequest

The discovery queries are specified from the
bottom of the layered GWSDL information model to
the top. The query for each layer specifies parameters
specific to it as well as parameters specific to each of
the lower layers that it builds upon. Thus the number
of parameters increases as queries are defined for
higher level types in the model. This is key to being
able to discover higher level objects based on
attributes of the lower level objects that they build
upon. [3]

There are many parameters supported for the
discovery query for each higher level type in the
model. However, it is often the case that discovery
may not require parameters specific to all lower level
types. To facilitate pruning of the discovery query for
unwanted predicates related to lower level types there
is a special parameter name $considerXXX where
XXX represents a lower level type within the model.
If the value of this parameter is set to “0” then all
parameter values specific to lower level type must be
ignored by the discovery query. [3]

4.1. GWSDL Document Discovery Query
The GWSDL Document discovery query must be

implemented by an ebXML Registry implementing
this profile. It allows the discovery of GWSDL
documents using zero or more of the parameters
described next.

• Parameter $name
This parameter's value may specify a string

containing a pattern to match against the name
attribute value of RegistryObjects that have
objectType of GWSDL.

• Parameter $description
This parameter's value may specify a string

containing a pattern to match against the description
attribute value of RegistryObjects that have
objectType of GWSDL.

• Parameter $targetNamespace
This parameter's value may specify a string

containing a pattern to match against the
targetNamespace of a GWSDL document.

• Parameter $importedNamespace
This parameter's value may specify a string

containing a pattern to match against the namespaces
imported by a GWSDL document.

4.2. ServiceData Discovery Query
The OGSI ServiceData discovery query allows the

discovery of sd:serviceData instances using zero or
more of the parameters described next.

• Parameter $serviceData.name
This parameter's value may specify a string

containing a pattern to match against the name
attribute value of sd:serviceData instances.

• Parameter $ serviceData.description
This parameter's value may specify a string

containing a pattern to match against the description
attribute value of sd:documentation instances.

The listing 14 shows an example of how to find all
sd:serviceData instances that have a name containing
the string “counterValue”.

<AdhocQueryRequest>
 <rim:AdhocQuery id="${STORED_QUERY_ID}">
 <rim:Slot name="$serviceData.name">
 <rim:ValueList>
 <rim:Value>%counterValue%</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 </rim:AdhocQuery>
</AdhocQueryRequest>

Listing 14. Example of ServiceData Discovery Query

4.3. PortType Discovery Query
The OGSI PortType discovery query allows the

discovery of ogsi:portType instances using zero or
more of the parameters described next.

• Parameter $portType.name
This parameter's value may specify a string

containing a pattern to match against the name
attribute value of ogsi:portType instances.

• Parameter $ portType.description
This parameter's value may specify a string

containing a pattern to match against the description
attribute value of ogsi:portType instances.

• Parameter $portType.targetNamespace

SETIT2007

 - 8 -

This parameter's value may specify a string
containing a pattern to match against the
targetNamespace of ogsi:portType instances.

• Parameter $portType.schemaNamespaces
This parameter's value may specify a string

containing a pattern to match against the XML schema
namespaces used within the wsdl:message instances
used within the wsdl:operation instances used within
the ogsi:portType instances.

• Parameter $considerServiceData
This is a $considerXXX parameter, where the

XXX is ServiceData, facilitating the discovery of a
PortType which has a ServiceData element with
specific parameters. This parameter's value may
specify a string of “1” or “0” to indicate whether or
not to consider the ServiceData specific parameters
that follow when processing the query. If unspecified
the value defaults to “0”.

• Parameter $serviceData.name
This parameter's value may specify a string

containing a pattern to match against the name
attribute value of sd:serviceData instances that are
used by the objects being discovered.

• Parameter $serviceData.description
This parameter's value may specify a string

containing a pattern to match against the content of the
sd:documentation element within sd:serviceData
instances that are used by the objects being
discovered.

4.4. Service, Port and Binding Discovery Queries
The Port and Binding discovery queries allow the

discovery of wsdl:port and wsdl:binding instances
respectively, using their parameters. In the same way,
the Service discovery query allows the discovery of
wsdl:service/ogsi:GridService instances using their
parameters. These three top level entities in the
GWSDL Information Model are the same as their
equivalents in WSDL Information Model. The main
parameters of these entities are described in the
ebXML Registry profile for Web Services [3].

The only things that will have to be added to these
parameters are related parameters of each entity’s
ServiceData as their lower layer parameters. These
parameters work in the same way in all three entities
and enable them to consider ServiceData’s parameters
as their own lower layer parameters. This is exactly
the same as the PortTye discovery query for searching
on the ServiceData’s parameters, which is discussed in
4.3. To achieve this, we suggest adding three
parameters to those of each entity’s. The first
Parameter is $considerServiceData, which enables us
to consider ServiceData’s parameters in our discovery
queries. The other two are $serviceData.name and
$serviceData.description. The details of these
parameters are similar to those of the PortType’s,
which is described in 4.3. Using these parameters, we
will be able to discover Service, Binding and Port
instances, which have a ServiceData with specific
parameters.

For example, the Service entity, which is the top
most level entity, must have four $considerXXX
parameters. These are $considerBinding,
$considerPort, $considerPortType and the newly
added $considerServiceData plus their related
parameters such as $binding.name or
$serviceData.description.

The listing 15 shows an example of how to find all
Service instances with the name ”counterService”,
which have a portType with the name
“counterPortType” and a serviceData with the name
“counterValue”.

<AdhocQueryRequest>
 <rim:AdhocQuery id="${STORED_QUERY_ID}">
 <rim:Slot name="$service.name">
 <rim:ValueList>
 <rim:Value>counterService</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 <rim:Slot name="$considerPortType">
 <rim:ValueList>
 <rim:Value>1</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 </rim:Slot>
 <rim:Slot name="$portType.name">
 <rim:ValueList>
 <rim:Value>counterPortType</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 <rim:Slot name="$considerServiceData">
 <rim:ValueList>
 <rim:Value>1</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 <rim:Slot name="$serviceData.name">
 <rim:ValueList>
 <rim:Value>counterValue</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 </rim:AdhocQuery>
</AdhocQueryRequest>

Listing 15. Example of Service Discovery Query

5. Conclusion
In our earlier paper [10] we demonstrated a way to

do business using ebXML standards on the Grid
environment using UDDI registry. Here we have
shown how to bypass UDDI and take advantage of,
the more sophisticated, ebXML Registry. It is
important to note that the aim is not to provide a set of
instructions, but to give a method to achieve this goal.

ACKNOWLEDGMENT
I would like to express my gratitude and

appreciation to Farrukh Najmi for his guidance and
kind support. Farrukh Najmi is the main author of
ebXML Registry specification, founder and lead
architect of freebXML Registry open source project,
principal architect of Sun Service Registry product

SETIT2007

 - 9 -

and specification lead of Java API for XML
Registries.

This paper is sponsored by Iran
Telecommunication Research Centre, Ministry of
Information & Communication Technology.

REFERENCES
[1] ebXML Registry 3.0: An overview, OASIS,

http://www.oasis-
open.org/committees/download.php/13010/ebXMLRegi
stryOverview.pdf.

[2] ebXML Registry Information Model, V3.0, Sally Fuger,
Farrukh Najmi, Nikola Stojanovic, OASIS, May 2005,
http://docs.oasis-open.org/regrep-rim/v3.0/.

[3] ebXML Registry profile for Web Services, Version 1.0
Draft 3, Farrukh Najmi, Joseph Chiusano, OASIS,
September 2005,
http://ebxmlrr.sourceforge.net/tmp/regrep-ws-profile-
1.0.pdf

[4] ebXML, “OASIS/ebXML Registry Services
Specification”, V3.0, , Sally Fuger, Farrukh Najmi,
Nikola Stojanovic, OASIS, May 2005, http://docs.oasis-
open.org/regrep-rs/v3.0.

[5] ebXML Technical Architecture Specification, v1.0.4,
Anders Grangard, Brian Eisenberg, Duane Nickull,
Colin Barham, …, 2001,
http://www.ebxml.org/specs/ebTA.pdf.

[6] ebXML, http://www.ebXML.org

[7] Enhancing UDDI for Grid Service Discovery by Using
Dynamic Parameters, ICCSA 2005, Springer-Verlag
Berlin Heidelberg, 2005.

[8] Grid Service Specification, Steven Tuecke, Karl
Czajkowski, Ian Foster, Jeffrey Frey, Steve Graham,
Carl Kesselman, Global Grid Forum, 2002.

[9] Grid Computing: A Practical Guide to Technology and
Applications, Ahmar Abbas, Firewall Media, 2004.

[10] Grid based Specifications of eXML, Bahareh
Rahmanzadeh Heravi, Mohammadreza Razzazi, 2nd
IEEE International Conference on Information &
Communication Technologies: From Theory to
Applications, April 2006.

[11] Grid Computing: A Practical Guide to Technology and
Applications, Ahmar Abbas, Firewall Media, 2004.

[12] Open Grid Service Infrastructure Primer, Global Grid
Forum, August 2004, http://www.ggf.org/ogsi-wg.

[13] Open Grid Services Infrastructure (OGSI), Version 1.0,
S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman, ..., June 2003, http://www.ggf.org/ogsi-
wg.

[14] The Anatomy of the Grid: Enabling Scalable Virtual
Organizations, Foster, I., Kesselman, C. and Tuecke, S.
International Journal of High Performance Computing
Applications, 2001,
http://www.globus.org/research/papers/anatomy.pdf.

[15] The Open Grid Services Architecture, Version 1.5, I.
Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, …,

24 July 2006, http://forge.gridforum.org/projects/ogsa-
wg

 [16] Understanding Web Services, XML, WSDL, SOAP and
UDDI, Eric Newcomer, Addison Wesley, 2002.

